Contact and edge effects in graphene devices.

نویسندگان

  • Eduardo J H Lee
  • Kannan Balasubramanian
  • Ralf Thomas Weitz
  • Marko Burghard
  • Klaus Kern
چکیده

Electrical transport studies on graphene have been focused mainly on the linear dispersion region around the Fermi level and, in particular, on the effects associated with the quasiparticles in graphene behaving as relativistic particles known as Dirac fermions. However, some theoretical work has suggested that several features of electron transport in graphene are better described by conventional semiconductor physics. Here we use scanning photocurrent microscopy to explore the impact of electrical contacts and sheet edges on charge transport through graphene devices. The photocurrent distribution reveals the presence of potential steps that act as transport barriers at the metal contacts. Modulations in the electrical potential within the graphene sheets are also observed. Moreover, we find that the transition from the p- to n-type regime induced by electrostatic gating does not occur homogeneously within the sheets. Instead, at low carrier densities we observe the formation of p-type conducting edges surrounding a central n-type channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Reducing contact resistance in graphene devices through contact area patterning.

Performance of graphene electronics is limited by contact resistance associated with the metal-graphene (M-G) interface, where unique transport challenges arise as carriers are injected from a 3D metal into a 2D-graphene sheet. In this work, enhanced carrier injection is experimentally achieved in graphene devices by forming cuts in the graphene within the contact regions. These cuts are orient...

متن کامل

Origin of Contact Resistance at Ferromagnetic Metal-Graphene Interfaces.

Edge contact geometries are thought to yield ultralow contact resistances in most nonferromagnetic metal-graphene interfaces, owing to their large metal-graphene coupling strengths. Here, we examine the contact resistance of edge- versus surface-contacted ferromagnetic metal-graphene interfaces (i.e., nickel- and cobalt-graphene interfaces) using both single-layer and few-layer graphene. Good q...

متن کامل

One-dimensional electrical contact to a two-dimensional material.

Heterostructures based on layering of two-dimensional (2D) materials such as graphene and hexagonal boron nitride represent a new class of electronic devices. Realizing this potential, however, depends critically on the ability to make high-quality electrical contact. Here, we report a contact geometry in which we metalize only the 1D edge of a 2D graphene layer. In addition to outperforming co...

متن کامل

Tunable transmission of quantum Hall edge channels with full degeneracy lifting in split-gated graphene devices

Charge carriers in the quantum Hall regime propagate via one-dimensional conducting channels that form along the edges of a two-dimensional electron gas. Controlling their transmission through a gate-tunable constriction, also called quantum point contact, is fundamental for many coherent transport experiments. However, in graphene, tailoring a constriction with electrostatic gates remains chal...

متن کامل

High-Speed Ternary Half adder based on GNRFET

Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semiconductor behavior,are used to design the digital circuits. This paper presents a new design of ternary half a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 3 8  شماره 

صفحات  -

تاریخ انتشار 2008